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Quantitative interpretation of electron spectra requires a thorough understanding of the surface 
sensitivity of the technique, or, in other words, the transfer of the signal electrons from the source to 
the detector. The theory of electron transport of relevance for XPS, AES, REELS, EPES and related 
techniques is meanwhile well established. Within the framework of the partial intensity approach it is 
possible to quantitatively account for elastic scattering of the probing particles by the ionic subsystem 
as well as volume, surface and intrinsic excitations of the electronic subsystem of the solid. 
Quantitative spectrum interpretation is achieved by means of Partial Intensity Analysis (PIA) that can 
be used i.a. to separate the contributions of n-fold inelastically scattered electrons from an 
experimental spectrum. In particular, it can be employed to eliminate the contribution of multiple 
scattering from an electron spectrum, ultimately giving the zero-order partial spectrum corresponding 
to the no-loss peak (a procedure for historical reasons often referred to as background subtraction). 
The various excitations processes involved in the signal electron escape such as surface, volume and 
intrinsic excitations are uncorrelated for medium energies. This makes it possible to successively 
separate contributions corresponding to different types of excitations. In this way, information on the 
specimen structure is not only conveyed through the signal electron emission process itself, but also 
through the events taking place along the way between signal electron generation and detection. The 
relevant procedures are summarized and recent applications are presented. Examples of applications 
are given in the field of XPS for different surface morphology, total reflection XPS (TRXPS), Auger 
Photoelectron Coincidence Spectroscopy (APECS), Reflection Electron Energy Loss Spectroscopy 
(REELS) and Elastic Peak Electron Spectroscopy (EPES). 

 
 
INTRODUCTION 

Quantitative interpretation of electron spectra 
for surface analysis requires a detailed understanding 
of the surface sensitivity of electron beam techniques. 
This is of great relevance for surface analysis 
techniques such as X-ray photoelectron spectroscopy 
(XPS), Auger electron spectroscopy (AES), reflection 
electron energy loss spectroscopy (REELS), elastic 
peak electron spectroscopy (EPES), Auger 
photoelectron coincidence spectroscopy (APECS), 
total reflection XPS (TRXPS) and the like. The 
superior surface sensitivity of these techniques stems 
from the strong electron solid interaction [1]. In the 
present paper, the basic ingredients of the theory for 
the surface sensitivity are summarized. In this 
connection the question how the emerging energy and 

angular signal electron spectrum is related to the 
energy, angular and depth distribution of the sources 
must be answered. In other words, the transfer of the 
signal electrons from their point of generation to 
emission from the surface is of main concern and is 
discussed in section 2.  

It turns out that the general formula describing 
the electron transfer can be expressed in terms of 
fluctuations of the electrons’ direction and energy in 
the course of a given number of interactions on one 
hand and the probability for a given number of 
interactions to occur on the other hand. The 
probability for ni-fold inelastic scattering is given by 
the so-called partial intensities, that depend on the 
boundary conditions of the considered problem. A 
very efficient procedure to calculate the partial 
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intensities for electron spectroscopy is the so-called 
trajectory reversal Monte Carlo algorithm. This 
algorithm was originally proposed for emission 
problems about a decade ago [2] and has been 
successfully employed since that time [3]. It was 
believed that it can not be applied to reflection 
problems until recently [4] the corresponding 
algorithm was found. The trajectory reversal 
algorithm for calculation of the partial intensities for 
emission (AES, XPS, APECS) as well as reflection 
(EPES, REELS) problems is presented in section 3. 

In section 4 the formalism for the electron 
transfer is brought into a form suitable for solving the 
more difficult and, from the point of view of practical 
application, more interesting inverse problem, to 
obtain information on the source energy and depth 
distribution of a given chemical species on the basis 
of a measured experimental spectrum. This gives rise 
to two procedures for spectrum decomposition. The 
first procedure [5] allows one to eliminate from a 
measured spectrum the contribution of electrons that 
have experienced multiple inelastic scattering of a 
given kind. The second procedure [6] can be used to 
obtain information on the distribution of energy 
losses in an individual inelastic excitation of a given 
type. 

Finally, in section 5, several applications of the 
outlined approaches are given. These include the 
simulation of elastic peak intensities in EPES, 
spectrum decomposition of REELS and XPS spectra, 
the energy distribution in TRXPS and selecting the 
surface sensitivity with APECS. 
 
THEORETICAL 

The starting point for a quantitative theory to 
describe an electron spectrum for surface analysis is 
the trivial observation that each electron emitted from 
the surface has experienced a certain number, say ni, 
inelastic collisions ni=0, 1, 2... Reversing this 
statement, we conceive the spectrum to consist of 
groups of ni-fold inelastically scattered electrons. 
Since energy losses and deflections as well as the 
angular and energy distribution of the source function 
are uncorrelated [1], it follows that the contribution to 
the spectrum corresponding to the group of n-fold 
inelastically scattered electrons can be written as a 

product of an energy dependent function Fni(E), the 
ni-th order partial energy distribution, and a function 
depending only on the emission direction, the partial 
intensities Cni(µ). Here µ=cosθ is the off-normal 
polar emission direction. Choosing the partial energy 
distributions to be normalized, ∫Fni(E)dE≡1 implies 
that these quantities represent the number of particles 
within the ni-th group, hence the name. The total 
spectrum Y(E,µ) is a superposition of the partial 
spectra associated with all groups: 
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where f0(E) is the energy distribution at the source 
and the symbol ⊗ denotes a convolution. The energy 
loss T of an electron that has been scattered ni times 
is subject to fluctuations, described by the quantities 
Γni(T) that are given in terms of an (ni-1)-fold 
self-convolution of the distribution of energy losses 
in an individual energy loss process [1], the 
normalized differential mean free path for scattering 
wi(T) : 

        
( ) ( )
( ) ( ) ( )∫

∞

∞− − ′′′−Γ=Γ

=Γ

TdTwTTT

TT

inn ii 1

0 δ
       (2) 

The quantities Cni(µ) represent the number of 
electrons that arrive in the detector after participating 
in ni inelastic collisions and can be established 
numerically, as described in the next section. The 
theoretical starting point for the calculation is the 
distribution Q(s,µ) of pathlengths s the electron 
travels inside the solid before reaching the detector. 
Multiplying this quantity with the probability Wni(s) 
for experiencing ni collisions after traveling the 
considered pathlength gives the partial intensities as 
an integral over the traveled pathlength: 
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where the collision number distribution Wni(s) in the 
quasi-elastic energy regime is given by [7]: 
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and λi is the inelastic mean free path (IMFP). 
Equation (3) is most useful for calculating the partial 
intensities for reflection problems as in EPES or 
REELS. For emission problems, such as AES, XPS, 
APECS and the like, it is sometimes more convenient 
to express the partial intensities as an integral over 
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the depth: 
          ( ) ( ) ( )∫

∞
=

0 0, dzzczC
ii nn µφµ           (5)  

where c0(z) is the depth distribution of the emitting 
species and the depth distribution functions φni(z,µ) 
describe the probability for escape in the polar 
emission direction µ  for an electron that was 
generated at the depth z and experienced ni inelastic 
collisions on its’ way to the surface. Note that the 
depth distribution functions as defined above 
represent the integral over the source angular 
distribution.  

If the flux of exciting radiation is 
inhomogeneous in depth and described by the 
excitation depth distribution function φX(z), the 
expression for the partial intensities is transformed 
into: 
        ( ) ( ) ( ) ( )∫

∞
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0 0, dzzczzC Xnn ii
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Finally, it is to be noted that the measured 
intensity also depends on a number of experimental 
factors like the analyzer transmission function, the 
detector efficiency etc. However, for spectrum 
analysis, the quantities of main importance are the 
reduced partial intensities γni: 
           ( ) ( ) ( )µµµγ 0==

iii nnn cc            (7) 

i.e. the partial intensities divided by the area of the 
no-loss peak. In this case, all experimental factors 
cancel out. 
 
SPECTRUM SIMULATION  

The general theoretical approach outlined in the 
previous section makes it clear that a spectrum can be 
simulated by means of the collision expansion in 
Equation (1). This requires establishing the partial 
loss distributions that can be easily calculated 
numerically, either by a direct self-convolution of the 
differential mean free path, or via a Fast Fourier 
Transform. Furthermore, the partial intensities need 
to be calculated. In some special simple cases this can 
be achieved analytically [1], but in the overwhelming 
majority of cases it is more convenient to establish 
these quantities numerically, in particular via a Monte 
Carlo (MC) simulation.  

The MC technique represents a most convenient 
means to study transport phenomena within the 
framework of a Boltzmann type kinetic equation 

where diffraction effects can be disregarded [8]. It is 
simple to implement and completely flexible with 
respect to the input parameters and boundary 
conditions. A disadvantage of this technique is that 
accumulation of the required statistical accuracy 
requires considerable computational effort. This is 
particularly problematic if the solid angle of the 
detector in the simulation is small, since then a large 
fraction of the simulated trajectories are generated in 
vain when they leave the solid in a direction not 
matching the analyzer acceptance angle (see Figure 
1a). In the case of emission problems, this difficulty 
may be overcome by invoking the symmetry 
properties of the kinetic equation, the so-called 
reciprocity relationships for linear transfer [9]. One of 
these relationships can be interpreted to state that 
instead of simulating the electron from its’ point of 
emission inside the solid, and following the particles’ 
path until it eventually escapes from the surface in a 
direction not necessarily matching the analyzer 
acceptance angle, the trajectory can be generated in 
reverse, starting in the analyzer from where its’ 
history is traced back in the solid. In this way, it is 
guaranteed that every simulated trajectory contributes 
to the calculated signal and the efficiency of the 
algorithm is drastically improved. By means of this 
trajectory reversal technique [2, 10, 11], the angular 
distribution of Auger- or photoelectrons can be 
rapidly calculated for an arbitrarily small acceptance 
angle leading to an enhancement in computational 
efficiency of typically several orders of magnitude. 
Recently, it has been shown that the trajectory 
reversal technique can also be applied to reflection 
problems [4]. The respective algorithms are outlined 
below.  

For emission problems, the depth distribution 
functions can be generated with a trajectory reversal 
MC simulation [2, 12] from which the partial 
intensities can be calculated by integration using 
Equation (6). Alternatively, the partial intensities can 
be directly generated during the simulation. The latter 
approach will be described below. The actual 
simulation of a trajectory is done in the conventional 
way by sampling the distribution of steplengths, 
scattering angles etc. and is described in various 
instances in the literature (see e.g. Ref. [1]).  For the 
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Fig. 1: Illustration of the principle of trajectory reversal. (a.) For emission problems, as in AES and XPS. The left 
panel shows the forward trajectory approach. Note that trajectories of type I. and III. do not enter the analyzer and 
are generated in vain. The right panel shows a reverse trajectory that is started in the analyzer and its’ history is 
traced back in the solid. (b.) Illustration of the generation of trajectory pairs for the trajectory reversal algorithm for 
reflection problems as in EPES or REELS. The left panel shows the "ingoing" (trajectory I.) and "outgoing" 
(trajectory II.) part of the trajectory, the right panel shows how this trajectory pair is merged at the depth z into a 
trajectory corresponding to a reflected electron (see text). 
 
 
 
trajectory reversal simulation, the essential difference 
is that the initial location and direction of motion of 
the trajectory is chosen at the surface in a direction 
along the analyzer axis (see Fig. 1). The history of the 
electron is then traced back inside the solid. A 
trajectory is terminated when its’ pathlength becomes 
too long to give a significant contribution to the 
signal, or when the particle leaves the solid again. 
This process is repeated for a large number of 
trajectories.  

Evaluation of this set of trajectories can be done 
in several different ways. One approach is to simply 
make a histogram of the traveled pathlengths being 
representative for the pathlength distribution Q(s,µ), 
and using eq. (3) to calculate the partial intensities. 
Combining eqs. (3) and (5) shows that the emission 
depth distribution functions can also be established in 
this way, by multiplying the pathlength distribution 
with the collision number distribution and integrating 
over the pathlength. However, the integral over the 
pathlength in eq. (3) can also be carried out 
analytically during the generation of a given step 
between elastic collisions. The contribution (∆Cni)k of 
the k-th step to the ni-th order partial intensity is 
given by the following recurrence relationship [1]: 

 
   ( ) ( ) ( ){ } ( )
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where ξk=sk/λi is the reduced length of the k-th step. 
In this way, one can also take into account the 
angular and depth distribution of the sources by 
weighting the k-th step with the source distribution 
g0(µk,µX) at the considered depth: 
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where µk, µX and zk are the polar direction of motion 
and direction of incidence of the exciting radiation 
and depth along the k-th step, respectively. After 
generating a large number of trajectories Ntraj in this 
way, the partial intensities are found as: 
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where ∆Ω is the solid angle of the analyzer. 
For a reflection geometry, trajectory pairs are 

generated (see Figure 1b). One of the trajectories of 
the pair has an incidence angle corresponding to the 
direction of the electron gun axis, while the other 
corresponds to the analyzer direction. The trajectory 
pair can be combined into a set of reflected 
trajectories at any depth by multiplication with the 
probability for the corresponding directional change, 
given by the elastic scattering cross section. At a 
particular depth z this results in a trajectory where m 
elastic processes occur "on the way in" and ne-m-1 
occur "on the way out". For a given trajectory pair, all 
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possible combined trajectories are established by 
determining the overlapping step segments for all 
steps taken by trajectory I. For the considered step 
shown in Figure 1b this gives a contribution to m=4 
for the ingoing and ne-m-1=4 for the outgoing part of 
the trajectory. Two additional contributions to the 
fourth step of the "ingoing" trajectory come from 
ne-m-1=1 and ne-m-1=2 of the "outgoing" trajectory. 
Thus, each trajectory pair is ultimately combined into 
an infinite number (at least one for each overlapping 
depth) of reflected trajectories with different collision 
orders. For any overlapping segment with scattering 
order (m,ne), the contribution to the scattering matrix 
Ψm,ne is given by[4]: 
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In this expression, Ω′
v

 and Ω ′′
v

 are the direction of 
the step along trajectory I and II respectively, ∆z is 
the length of the overlapping segment and Λ1 and Λ2 
denote the pathlengths traveled before the considered 
segment. The parameters α and β depend on the 
directions of the trajectory pair along the overlapping 
segment and are given in Table I. Finally the elastic 
reflection coefficient is evaluated via [4]: 
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Table I: Parameters α and β of Equation (11). µ′ and 
µ′′ represent the polar emission direction along the 
considered step of trajectory I and II. 

 
 
 
 

SPECTRUM ANALYSIS  
In this section, it is explained how the general 

formalism outlined above can be used for the analysis 
of experimental data in relevant fields. Spectrum 
decomposition can be achieved by two main 
procedures. The first procedure is used to eliminate 
the contribution of multiple inelastic scattering of a 
given type from an experimental spectrum, the 
second procedure is used to retrieve the differential 
mean free path for a given type of scattering from an 
energy loss spectrum. In both procedures it is 
assumed that the partial intensities have been 
established (e.g. with the procedures outlined in the 
previous section). 

When the partial intensities are known, Equation 
(1) can be interpreted as an equation for the unknown 
lineshape f0(E), assuming that the differential mean 
free path wi(T) is known, or as an equation for the 
differential mean free path wi(T) if the source energy 
distribution f0(E) is known. The former problem 
corresponds to elimination of multiple scattering (a 
procedure for historical reasons often referred to as 
"background subtraction"), the latter problem 
corresponds to retrieval of the interaction 
characteristics. The solution of these problems is 
discussed in several papers [1, 5, 13-15].  

The elimination of multiple scattering can be 
achieved by iteratively eliminating single, double and 
higher order inelastic scattering until the considered 
energy range is free of multiple scattering effects [1, 
5, 14]. Denoting the spectrum from which k-fold 
scattering has been eliminated by Yk, this can be 
achieved using the formula [1, 5, 16]: 

 
 ( ) ( ) ( ) ( )∫ ++ Γ+−= dTTTEYEYEY kkkk 10001 ,,, µµµ  (13)  

The coefficients qk are functions of the reduced bulk 
partial intensities γni=Cni/Cni=0 given in Table II. The 
subscripts of the coefficients qk are the partitions of 
the natural numbers [17]. 

A solution of Equation (1) to retrieve the 
distribution of energy losses in an individual collision 
wi(T) can be expressed in terms of the loss spectrum 
Y1

L(T), i.e. the spectrum from which the elastic peak 
has been removed [14]. Denoting the (k-1)-fold 
self-convolution of the loss spectrum by Yk

L(T), the 
single scattering loss distribution wi(T) is found as: 
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TABLE II: The first few coefficients qk (Equation (13)) and uk (Equation (14)) for spectrum deconvolution.  
q1=γ1   u1=1/γ1   
q2=γ2-q1q1   u2=(-γ2)/γ1

3   
q3=γ3-q1q2-q1q1q1   u3=(2γ2

2-γ1γ3)/γ1
5   

q4=γ4-q1q3-q2q2-q1q1q2-q1q1q1q1   u4=(-5γ2
3-γ1

2γ4+γ1γ2γ3)/γ1
7   

   ⋅⋅⋅    ⋅⋅⋅ 
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Successive orders of multiple scattering are 
eliminated term by term in the series Equation (14). 
The coefficients uk are again functions of the reduced 
partial intensities and are determined by the 
recurrence relations given in Ref. [14]. The first few 
coefficients are explicitly given in Table II. 

The remaining question is how to handle a 
situation where more than one type of inelastic 
process is of relevance, for example in a reflection 
energy loss experiment when both surface (subscript 
"ns") and bulk (subscript "nb") excitations are present 
(but not necessarily clearly distinguishable) in a 
spectrum: 
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It turns out that the partial intensities for volume 
scattering on one hand and surface (and also intrinsic) 
excitations on the other hand are uncorrelated [6]: 
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This condition is generally fulfilled for different types 
of inelastic scattering if only one of the scattering 
types involved takes place in a region of space whose 
dimensions exceed the elastic mean free path since 
then the region of space where the other types of 
scattering take place are crossed along a path that is 
approximately rectilinear [6, 18, 19]. Furthermore, 
when the different types of inelastic scattering exhibit 
no interference effects, one has the identity [1]: 
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Inserting Equation (16) and (17) into eq. (15) 
gives:  
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where the spectrum fs(E), that is free of bulk 

excitations, is given by: 
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Since the mathematical structure of these two 
equations is identical to that of Equation (1), the 
procedures summarized in eq. (13) and eq. (14) can 
be used to consecutively decompose a spectrum into 
its constituents corresponding to a given type of 
inelastic process. 
 
SELECTED APPLICATIONS 
Elastic Peak Electron Spectroscopy (EPES)  

Elastic peak electron spectroscopy measures the 
intensity of the (elastic) peak of electrons that are 
backreflected without any energy loss. The intensity 
(area) of the elastic peak is equal to the number of 
electrons escaping without an energy loss, the zero 
order partial intensity, and depends only on the elastic 
scattering cross section and the IMFP. Therefore 
EPES may be used to calibrate the IMFP. Indeed, a 
large number of papers report on measurements of 
this quantity by means of EPES [21-31].  

A reliable and efficient theoretical model is 
needed to relate the IMFP and elastic cross section to 
the elastic backscattering coefficient. In Figure 2, 
several such models are compared for electrons of 
several energies backreflected from a Au surface. The 
angular distribution is shown in the plane of 
incidence for an analyzer with a polar opening angle 
of 4°. The left panels are for normal incidence, the 
right panels for an incidence angle of 75° with 
respect to the surface normal. 

The models that are compared here are the 
conventional MC simulation, which is taken as 
representative for the solution of a Boltzmann type 
kinetic equation (open circles), the trajectory reversal 
MC algorithm presented above (filled circles labeled 
"Alg. I."), which is exactly equivalent to conventional  
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Fig. 2: Differential reflection coefficients for electrons of various energies reflected from a Au surface for normal 
incidence (left panels) and for an incidence angle of 75° (corresponding to an emission angle of -75° right panels).
Open circles: conventional Monte Carlo calculations (MC). Filled circles: trajectory reversal algorithm. Solid lines: 
approximate trajectory reversal algorithm [4]; Dashed lines Oswald-Kasper-Gaukler model [20]. 
 

Fig. 3: (a.) Partial intensities for reflection for several energies for a Si target. (b.) The corresponding experimental 
REELS spectra of Si for several energies. The upper thin lines represent the experimental data. The deconvoluted 
distribution of energy losses in a single surface excitation are shown as the lower thin lines in each panel. The thick 
solid lines are the theoretical single surface scattering loss distributions [33]. The right panels show the first 50 eV 
of the same data in more detail. 
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MC results, an approximate trajectory reversal 
algorithm (solid lines labeled "Alg. II") [4] and the 
Oswald-Kaspar-Gaukler (OKG) model (dashed lines) 
[20, 32]. 

It is seen that the conventional MC and the exact 
trajectory reversal model are in excellent agreement. 
Note however, that the number of trajectories 
generated with the trajectory reversal approach was 
lower by a factor of 1000! When the proper angular 
correlation at the depth where the trajectory pair is 
merged is neglected, the approximate trajectory 
reversal algorithm is obtained. This is even more 
efficient than the exact one, but is seen to deviate 
from the exact result for energies below ≲500 eV. 
When the elongation of the pathlength of the in-and 
outgoing part of the trajectory is neglected in addition, 
the OKG model is obtained that can be evaluated 
analytically but leads to significant deviation of more 
than 5% in all considered cases. 
 
Reflection Electron Energy Loss Spectroscopy 
(REELS)  

While the intensity of the elastic peak is 
determined by the zero order partial intensity for a 
reflection geometry, discussed in the previous section, 
a REELS spectrum is determined by the higher order 

partial intensities. As an example, Figure 3 shows the 
partial intensities for reflection of 300, 1000 and 
3000 eV electrons from a Si surface, as well as the 
corresponding experimental spectra and the spectra 
deconvoluted with the procedure outlined above (eq. 
(14)). Note in the survey spectra for Si (left panels of 
Figure 3b) that the shape of the background over the 
considered energy range depends significantly on the 
electron energy: while it is almost perfectly flat for 
3000 eV, it decreases with the energy loss for 300 eV. 
This difference in the shape of the loss distribution is 
entirely attributable to the details of the elastic 
scattering process that leads to different shapes of the 
pathlength distribution [30, 34]. This can be 
concluded from the data displayed in Figure 3a that 
present the partial intensities for reflection. These 
quantities are also seen to be qualitatively different 
for the different energies. When the proper partial 
intensities are used in the deconvolution procedure eq. 
(14), multiple volume scattering is consistently 
removed from the spectra. 

For the low loss region in the Si-spectra, the 
resulting deconvoluted distribution is seen to consist 
of a surface plasmon loss at ~11 eV that increases 
with decreasing energy compared to the bulk plasmon 
loss at ~17 eV. In the single surface scattering loss 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: (a.) Example of application of the background subtraction procedure using Equation (13) to a Cu Kα excited 
Si spectrum [36]. (b.) Illustration of the general background subtraction procedure applied to the spectrum of a 120 
Cu overlayer on a Si substrate. In this case the electron solid interaction was taken into account The dotted line in 
the lower panel of Figure b is the source energy distribution obtained by applying Equation (13) to the spectrum of 
a homogeneous Si sample. The two results are seen to be in good agreement. 
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distribution a negative contribution appears at the 
position of the bulk plasmon. This is closely matched 
by the theoretical curve that exhibits a pronounced 
begrenzungs correction at the bulk plasmon energy. 
The physical origin of this phenomenon is the 
orthogonality of surface and bulk excitations: the 
volume modes of the projectile induced field are 
partly depolarized by the surface charge. The 
begrenzungs effect was predicted by Ritchie almost 
half a century ago [35], but seems to have never been 
directly observed before. This emphasizes the 
necessity of truly quantitative spectrum analysis as 
explained in the present paper. 
 
X-ray Photoelectron Spectroscopy (XPS)  

The true lineshape of a photoelectron peak is 
important for fundamental studies concerning the 
chemical environment of the emitting species as well 
as for quantitative analysis by means of photoelectron 
spectroscopy. Very often, Tougaards’ procedure is 
used to eliminate the contribution of multiple 
scattering from electron spectra (for historical reasons 
commonly referred to as "background subtraction") 
[37]. However, this procedure only leads to 
reasonably reliable results in some special simple 
cases, e.g. when surface excitations can be neglected. 
In such cases, the partial intensities reduce to a 

simple mathematical form [1] and the general 
procedure eq. (13) reduces to Tougaards’ approach. 
When different types of scattering are relevant, the 
exact sequence of partial intensities becomes 
important and it is preferable to use eq. (13) with the 
proper coefficients (as given in Table I). 

An example is shown in Figure 4 that shows a 
high energy XPS spectrum of the Si 1s peak excited 
with unmonochromatized Cu Kα radiation, giving 
rise to an apparent doublet peak feature in the 
spectrum. For such high energies of the emitted 
signal electrons the signal mainly originates from the 
bulk of the solid and surface excitations as well as 
elastic scattering becomes less important compared to 
lower energies. Elimination of multiple scattering in 
the bulk by means of eq. (13) results in the spectrum 
shown in the lower panel. 

In Figure 4b the same spectrum is shown after 
deposition of 120 Å of Cu on the Si substrate. The 
upper panel also shows the result of elimination of 
multiple scattering in the substrate, while in the lower 
panel, overlayer scattering is also eliminated, thereby 
providing an example of the possibility to 
subsequently eliminate different types of scattering 
from the spectrum, as described by eqs. (18) and (19). 
The dotted line, shown as a reference, is the 
deconvoluted spectrum shown in Figure 4a, which is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Simulated spectra of a sample consisting of a 0.5 Å thick C-contamination layer on top of a 10 Å thick SiO2 
layer on a Si-substrate. The left panel shows the simulated ordinary XPS-spectrum, the panel on the right hand 
side represents the Total Reflection XPS spectrum, when the angle of incidence of the x-rays is close to the angle 
of total reflection. 
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in good agreement with the spectrum obtained from 
the overlayer system. The two shoulders on the low 
kinetic energy side are attributed to intrinsic 
excitations [18, 36].  
 
Total Reflection X-ray Photoelectron Spectroscopy 
(TRXPS)  

In ordinary XPS, the angle of incidence of the 
incoming x-rays is usually far away from the critical 
angle for total reflection. In this case the length scale 
over which absorption of the x-rays becomes 
appreciable is orders of magnitude larger than the 
inelastic mean free path. The excitation depth 
distribution function of x-rays striking the surface 
under a polar angle θX can be described in terms of a 
Beer-Lambert attenuation law: 

 
        ( ) ( )XXXX zmz θρθφ cosexp, −=        (20)  

where mX is the mass absorption coefficient 
determining the relevant excitation range and ρ is the 
mass density of the material. The characteristic length 
of the emission depth distribution function is 
approximately given by the inelastic mean free path 
that is orders of magnitude smaller λi«1/mXρ for 
ordinary XPS. In consequence, the excitation depth 
distribution φX(z) may be assumed to be constant in 
Equation (6) and the variation of the excitation depth 
distribution with the depth in the integral (6) can be 
neglected. Then the surface sensitivity of XPS is 
entirely determined by the escape process. When the 

angle of x-rays is close to the critical angle for total 
reflection θX,c, the characteristic length for the 
excitation process becomes comparable to the 
inelastic mean free path [38] and an angular variation 
of the (glancing) incidence angle according to eq. (6) 
allows to probe different depth regions, by effectively 
changing the excitation depth distribution 
experimentally. 

An example is shown in Figure 5 where 
simulated spectra [3] are presented for a Silicon 
substrate covered with an oxide layer of 8 Å 
thickness and a 0.5 Å thick carbonaceous 
contamination layer. The left panel shows the Al Kα 
spectrum for normal incidence of the x-rays, the right 
panel shows the result corresponding to a incidence 
geometry close to the critical angle where the 
excitation length scale is about 20 Å.  

Since the excitation depth distribution function 
decays over a depth range comparable to the zero 
order emission depth distribution function φni=0(z,θ), 
mainly those signal electrons are sampled that escape 
without being inelastically scattered. In consequence, 
the higher order partial intensities, that make up the 
inelastic background, are suppressed since the 
emission depth distribution function for increasing 
order of scattering samples increasingly larger depths 
(approximately niλi/cosθe for ni-th order scattering 
[14]). This explains the reduced inelastic background 
seen in the TRXPS spectra in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6: (a.) Partial escape distribution, or depth distribution function (DDF), φnX(z, θO) for the Si 2p1/2 transition. 
These data were simulated by means of a Monte Carlo model [3] for normal x-ray incidence and with the Auger 
and photoelectron detected at an off-normal emission angle of 60° as indicated in the inset. (b) Same as (a), for 
Si-LVV Auger electrons. (c.) Reduced double differential partial intensities for bulk inelastic scattering 
γnX,nA=CnX,nA/CnX=0,nA=0 calculated from the curves in (a.) and (b.) using Eq (21). The dashed curve represents the Si 
2p singles partial intensities for bulk scattering. 
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Auger Photoelectron Coincidence Spectroscopy 
(APECS)  

In Auger-Photoelectron Spectroscopy (APECS), 
photoelectrons are measured in coincidence with 
Auger electrons emitted from the same ionization 
event. This allows one to study the emission process 
in greater detail, permitting the identification of 
initial and final state effects, satellite structures, shake 
processes etc. [39-45]. In early work in this field [39], 
it was already pointed out that the surface sensitivity 
of the technique is enhanced as compared to ordinary 
electron spectroscopy, manifest in a decreased 
inelastic background in the experimental spectra [40, 
45]. 

Figures. 6a, b display the escape probability of 
the Si 2p (φnX(z)) and Si-LVV (φnA(z)) electrons 
which have experienced a certain number of volume 
excitations. It can be seen that the depth ranges 
sampled by the depth distribution functions for the Si 
2p and the Si-LVV peak are distinctly different. In the 
case of APECS, one is only interested in electrons 
created at the same location, and the partial 
intensities for APECS for an ideally flat 
homogeneous surface can be written as: 
          ( ) ( )∫

∞
=

0, dzzzC
AXXA nnnn φφ          (21)  

where nX and nA denote the collision number of the 
photo- and Auger electron, respectively. A survey of 
the collision statistics for the Si 2p APECS core hole 
spectrum is presented in Figure 6c that displays the 
partial intensities normalized by the elastic peak area. 
If the Si 2p peak is measured in coincidence with the 
LVV no-loss peak (curve labeled nA=0), the first and 
higher order plasmons (nX≥1) are strongly reduced 
with respect to the singles spectrum (dashed line). If 
the same spectrum is measured in coincidence with 
the first plasmon in the Auger line (nA=1), the 
intensity of the inelastic background increases again. 
Since the probability for inelastic scattering increases  
monotonically with the respective pathlength, those 
Auger electrons that end up in the first plasmon peak 
originate from larger depths. Then the 2p electrons 
measured in coincidence with them will also travel a 
longer pathlength in the solid and the probability for 
experiencing an inelastic collision increases. The 
above implies that the emission depth of the elastic 
peak in the photoelectron spectrum (nX=0) can be 

selected by measuring the spectrum in coincidence 
with energies corresponding to a particular number of 
plasmon losses in the Auger line. In other words, the 
surface sensitivity of APECS can be selected by 
measuring the photoemission line in coincidence with 
different energies in the inelastic tail of the Auger line 
and vice versa.  

An example of the latter statement is shown in 
Fig. 7 [46]. The filled circles represent the ordinary 
("singles") XPS spectrum, the open triangles (labeled 
"PK") represent the Si 2p peak measured in 
coincidence with the no-loss feature in the Si-LVV 
Auger peak while the open circles (labeled "BG") are 
the spectrum in coincidence with the first plasmon 
loss in the Auger peak. The three spectra were 
normalized to the same peak height in the maximum. 
It is seen that the plasmon in the "PK" spectrum is 
significantly reduced with respect to the singles 
spectrum, a manifestation of the enhanced surface 
sensitivity of APECS [39]. In the BG-spectrum the 
intensity of the first volume plasmon increases again, 
indicating that larger depths are sampled in this case. 
The results are in close agreement with model 
calculations [3] thereby proving the ability of APECS 
to discriminate the average emission depth of 
individual electrons: while the electrons in the PK 
spectrum originate from an average depth of about 
2.0±2.1 Å, the average emission depth of the BG 
spectrum amounts to about 4.7±4.9 Å. The singles 

Fig 7: Si-2p spectrum measured in coincidence with 
the background in the Si-LVV spectrum (open 
circles),as well as with the peak of the Si-LVV Auger 
line (open triangles). The filled circles are the 
corresponding singles intensities. The solid and dotted 
lines represent results of model calculations with the
SESSA-Software (Simulation of Electron Spectra for 
Surface Analysis) [3] (see text). The inset shows an
expanded view of the BG and PK spectra. 
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spectrum, on the other hand, consists of electrons 
emitted from an average depth of 6.1±6.5 Å. The 
uncertainties quoted for the emission depths represent 
the root-mean-square widths σ<z> of the fluctuations 
in the emission depth that are inherent to the 
stochastic process for multiple scattering [46]. 
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